Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews...
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • Reparative Immunology (Jul 2019)
    • Allergy (Apr 2019)
    • Biology of familial cancer predisposition syndromes (Feb 2019)
    • Mitochondrial dysfunction in disease (Aug 2018)
    • Lipid mediators of disease (Jul 2018)
    • Cellular senescence in human disease (Apr 2018)
    • View all review series...
  • Collections
    • Recently published
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Scientific Show Stoppers
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • About
  • Editors
  • Consulting Editors
  • For authors
  • Current issue
  • Past issues
  • By specialty
  • Subscribe
  • Alerts
  • Advertise
  • Contact
  • Conversations with Giants in Medicine
  • Author's Takes
  • Recently published
  • Brief Reports
  • Technical Advances
  • Commentaries
  • Editorials
  • Hindsight
  • Review series
  • Reviews
  • The Attending Physician
  • First Author Perspectives
  • Scientific Show Stoppers
  • Top read articles
  • Concise Communication

Neuroscience

  • 389 Articles
  • 7 Posts
  • ← Previous
  • 1
  • 2
  • 3
  • 4
  • 5
  • …
  • 38
  • 39
  • Next →
Membralin deficiency dysregulates astrocytic glutamate homeostasis leading to ALS-like impairment
Lu-Lin Jiang, … , Timothy Y. Huang, Huaxi Xu
Lu-Lin Jiang, … , Timothy Y. Huang, Huaxi Xu
Published May 21, 2019
Citation Information: J Clin Invest. 2019. https://doi.org/10.1172/JCI127695.
View: Text | PDF

Membralin deficiency dysregulates astrocytic glutamate homeostasis leading to ALS-like impairment

  • Text
  • PDF
Abstract

Mechanisms underlying motor neuron degeneration in amyotrophic lateral sclerosis (ALS) are yet unclear. Specific deletion of the ER-component membralin in astrocytes manifested postnatal motor defects and lethality in mice, causing the accumulation of extracellular glutamate through reducing the glutamate transporter EAAT2. Restoring EAAT2 levels in membralin KO astrocytes limited astrocyte-dependent excitotoxicity in motor neurons. Transcriptomic profiles from mouse astrocytic membralin KO motor cortex indicated significant perturbation in KEGG pathway components related to ALS, including downregulation of Eaat2 and upregulation of Tnfrsf1a. Changes in gene expression with membralin deletion also overlapped with mouse ALS models and reactive astrocytes. Our results shown that activation of TNF receptor (TNFR1)-NFκB pathway known to suppress Eaat2 transcription was upregulated with membralin deletion. Further, reduced membralin and EAAT2 levels correlated with disease progression in spinal cord from SOD1-mutant mouse models, and reductions in membralin/EAAT2 were observed in human ALS spinal cord. Importantly, overexpression of membralin in SOD1G93A astrocytes decreased TNFR1 levels and increased EAAT2 expression, and improved motor neuron survival. Importantly, upregulation of membralin in SOD1G93A mice significantly prolonged mouse survival. Together, our study provided a mechanism for ALS pathogenesis where membralin limited glutamatergic neurotoxicity, suggesting that modulating membralin had potentials in ALS therapy.

Authors

Lu-Lin Jiang, Bing Zhu, Yingjun Zhao, Xiaoguang Li, Tongfei Liu, Juan Pina-Crespo, Lisa Zhou, Wenxi Xu, Maria J. Rodriguez, Haiyang Yu, Don W. Cleveland, John Ravits, Sandrine Da Cruz, Tao Long, Timothy Y. Huang, Huaxi Xu

×

Autism-linked dopamine transporter mutation alters striatal dopamine neurotransmission and dopamine-dependent behaviors
Gabriella E. DiCarlo, … , Mark T. Wallace, Aurelio Galli
Gabriella E. DiCarlo, … , Mark T. Wallace, Aurelio Galli
Published May 16, 2019
Citation Information: J Clin Invest. 2019. https://doi.org/10.1172/JCI127411.
View: Text | PDF

Autism-linked dopamine transporter mutation alters striatal dopamine neurotransmission and dopamine-dependent behaviors

  • Text
  • PDF
Abstract

The precise regulation of synaptic dopamine (DA) content by the dopamine transporter (DAT) ensures the phasic nature of the DA signal, which underlies the ability of DA to encode reward prediction error, thereby driving motivation, attention, and behavioral learning. Disruptions to the DA system are implicated in a number of neuropsychiatric disorders, including attention deficit hyperactivity disorder (ADHD) and, more recently, Autism Spectrum Disorder (ASD). An ASD-associated de novo mutation in the SLC6A3 gene resulting in a threonine to methionine substitution at site 356 (DAT T356M) was recently identified and has been shown to drive persistent reverse transport of DA (i.e. anomalous DA efflux) in transfected cells and to drive hyperlocomotion in Drosophila melanogaster. A corresponding mutation in the leucine transporter, a DAT-homologous transporter, promotes an outward-facing transporter conformation upon substrate binding, a conformation possibly underlying anomalous dopamine efflux. Here we investigated in vivo the impact of this ASD-associated mutation on DA signaling and ASD-associated behaviors. We found that mice homozygous for this mutation display impaired striatal DA neurotransmission and altered DA-dependent behaviors that correspond with some of the behavioral phenotypes observed in ASD.

Authors

Gabriella E. DiCarlo, Jenny I. Aguilar, Heinrich J.G. Matthies, Fiona E. Harrison, Kyle E. Bundschuh, Alyssa West, Parastoo Hashemi, Freja Herborg, Mattias Rickhag, Hao Chen, Ulrik Gether, Mark T. Wallace, Aurelio Galli

×

CB1 agonism prolongs therapeutic window for hormone replacement in ovariectomized mice
Kun Zhang, … , Shui-bing Liu, Ming-gao Zhao
Kun Zhang, … , Shui-bing Liu, Ming-gao Zhao
Published May 6, 2019
Citation Information: J Clin Invest. 2019. https://doi.org/10.1172/JCI123689.
View: Text | PDF

CB1 agonism prolongs therapeutic window for hormone replacement in ovariectomized mice

  • Text
  • PDF
Abstract

Hormone therapy (HT) is reported to be deficient in improving learning and memory in older postmenopausal women according to recent clinical studies; however, the reason for failure is unknown. A “window of opportunity” for estrogen treatment is proposed to explain this deficiency. Here, we found that facilitation of memory extinction and long-term depression by 17β-estradiol (E2) was normal in mice 1 week after ovariectomy (OVXST), but it was impaired in mice 3 months after ovariectomy (OVXLT). High-throughput sequencing revealed a decrease of miR-221-5p, which promoted cannabinoid receptor 1 (CB1) ubiquitination by upregulation of Neurl1a/b in E2-treated OVXLT mice. Blood samples from postmenopausal women aged 56–65 indicated decreases of miR-221-5p and 2-arachidonoylglycerol compared with samples from perimenopausal women aged 46–55. Replenishing of miR-221-5p or treatment with a CB1 agonist rescued the impairment of fear extinction in E2-treated OVXLT mice. The present study demonstrates that an HT time window in mice can be prolonged by cotreatment with a CB1 agonist, implying a potential strategy for HT in long-term menopausal women.

Authors

Kun Zhang, Qi Yang, Le Yang, Yan-jiao Li, Xin-shang Wang, Yu-jiao Li, Rui-li Dang, Shao-yu Guan, Yan-yan Guo, Ting Sun, Yu-mei Wu, An Liu, Yan Zhang, Shui-bing Liu, Ming-gao Zhao

×

Inhibiting pathologically active ADAM10 rescues synaptic and cognitive decline in Huntington’s disease
Elena Vezzoli, … , Elena Cattaneo, Chiara Zuccato
Elena Vezzoli, … , Elena Cattaneo, Chiara Zuccato
Published May 6, 2019
Citation Information: J Clin Invest. 2019. https://doi.org/10.1172/JCI120616.
View: Text | PDF

Inhibiting pathologically active ADAM10 rescues synaptic and cognitive decline in Huntington’s disease

  • Text
  • PDF
Abstract

A disintegrine and metalloproteinase 10 (ADAM10) is implicated in synaptic function through its interaction with postsynaptic receptors and adhesion molecules. Here, we report that levels of active ADAM10 are increased in Huntington’s disease (HD) mouse cortices and striata and in human postmortem caudate. We show that, in the presence of polyglutamine-expanded (polyQ-expanded) huntingtin (HTT), ADAM10 accumulates at the postsynaptic densities (PSDs) and causes excessive cleavage of the synaptic protein N-cadherin (N-CAD). This aberrant phenotype is also detected in neurons from HD patients where it can be reverted by selective silencing of mutant HTT. Consistently, ex vivo delivery of an ADAM10 synthetic inhibitor reduces N-CAD proteolysis and corrects electrophysiological alterations in striatal medium-sized spiny neurons (MSNs) of 2 HD mouse models. Moreover, we show that heterozygous conditional deletion of ADAM10 or delivery of a competitive TAT-Pro-ADAM10709–729 peptide in R6/2 mice prevents N-CAD proteolysis and ameliorates cognitive deficits in the mice. Reduction in synapse loss was also found in R6/2 mice conditionally deleted for ADAM10. Taken together, these results point to a detrimental role of hyperactive ADAM10 at the HD synapse and provide preclinical evidence of the therapeutic potential of ADAM10 inhibition in HD.

Authors

Elena Vezzoli, Ilaria Caron, Francesca Talpo, Dario Besusso, Paola Conforti, Elisa Battaglia, Elisa Sogne, Andrea Falqui, Lara Petricca, Margherita Verani, Paola Martufi, Andrea Caricasole, Alberto Bresciani, Ottavia Cecchetti, Pia Rivetti di Val Cervo, Giulio Sancini, Olaf Riess, Hoa Nguyen, Lisa Seipold, Paul Saftig, Gerardo Biella, Elena Cattaneo, Chiara Zuccato

×

Elevation in plasma tRNA fragments precede seizures in human epilepsy
Marion C. Hogg, … , David C. Henshall, Jochen H.M. Prehn
Marion C. Hogg, … , David C. Henshall, Jochen H.M. Prehn
Published April 30, 2019
Citation Information: J Clin Invest. 2019. https://doi.org/10.1172/JCI126346.
View: Text | PDF

Elevation in plasma tRNA fragments precede seizures in human epilepsy

  • Text
  • PDF
Abstract

Transfer RNAs (tRNAs) are a major class of noncoding RNA. Stress-induced cleavage of tRNA is highly conserved and results in tRNA fragments. Here we find specific tRNA fragments in plasma are associated with epilepsy. Small RNA sequencing of plasma samples collected during video-EEG monitoring of focal epilepsy patients identified significant differences in three tRNA fragments (5′GlyGCC, 5′AlaTGC, and 5′GluCTC) from controls. Levels of these tRNA fragments were higher in pre-seizure than post-seizure samples, suggesting they may serve as biomarkers of seizure risk in epilepsy patients. In vitro studies confirmed that production and extracellular release of tRNA fragments was lower after epileptiform-like activity in hippocampal neurons. We designed PCR-based assays to quantify tRNA fragments in a cohort of pre- and post-seizure plasma samples from focal epilepsy patients and healthy controls. Receiver operating characteristic analysis indicated that tRNA fragments potently distinguished pre- from post-seizure patients. Elevated tRNA fragments levels were not detected in patients with psychogenic non-epileptic seizures, and did not result from medication tapering. This study identifies a novel class of epilepsy biomarker and reveals the potential existence of prodromal molecular patterns in blood that could be used to predict seizure risk.

Authors

Marion C. Hogg, Rana Raoof, Hany El Naggar, Naser Monsefi, Norman Delanty, Donncha F. O'Brien, Sebastian Bauer, Felix Rosenow, David C. Henshall, Jochen H.M. Prehn

×

Sestrin modulator NV-5138 produces rapid antidepressant effects via direct mTORC1 activation
Taro Kato, … , Seung Hahm, Ronald S. Duman
Taro Kato, … , Seung Hahm, Ronald S. Duman
Published April 16, 2019
Citation Information: J Clin Invest. 2019. https://doi.org/10.1172/JCI126859.
View: Text | PDF

Sestrin modulator NV-5138 produces rapid antidepressant effects via direct mTORC1 activation

  • Text
  • PDF
Abstract

Preclinical studies demonstrate that rapid acting antidepressants, including ketamine require stimulation of mTORC1 signaling. This pathway is regulated by neuronal activity, endocrine and metabolic signals, notably the amino acid leucine, which activates mTORC1 signaling via binding to the upstream regulator sestrin. Here, we examined the antidepressant actions of NV-5138, a novel highly selective small molecule modulator of sestrin that penetrates the blood brain barrier. The results demonstrate that a single dose of NV-5138 produced rapid and long-lasting antidepressant effects, and rapidly reversed anhedonia caused by chronic stress exposure. The antidepressant actions of NV-5138 required BDNF release as the behavioral responses are blocked by infusion of a BDNF neutralizing antibody into the medial prefrontal cortex (mPFC) or in mice with a knock-in of a BDNF polymorphism that blocks activity dependent BDNF release. NV-5138 administration also rapidly increased synapse number and function in the mPFC, and reversed the synaptic deficits caused by chronic stress. Together, the results demonstrate that NV-5138 produced rapid synaptic and antidepressant behavioral responses via activation of the mTORC1 pathway and BDNF signaling, indicating that pharmacological modulation of sestrin is a novel approach for development of rapid acting antidepressants.

Authors

Taro Kato, Santosh Pothula, Rong-Jian Liu, Catharine H. Duman, Rosemarie Terwilliger, George P. Vlasuk, Eddine Saiah, Seung Hahm, Ronald S. Duman

×

ATP6AP2 variant impairs CNS development and neuronal survival to cause fulminant neurodegeneration
Takuo Hirose, … , Genevieve Nguyen, Matthias Groszer
Takuo Hirose, … , Genevieve Nguyen, Matthias Groszer
Published April 15, 2019
Citation Information: J Clin Invest. 2019. https://doi.org/10.1172/JCI79990.
View: Text | PDF

ATP6AP2 variant impairs CNS development and neuronal survival to cause fulminant neurodegeneration

  • Text
  • PDF
Abstract

Vacuolar H+-ATPase–dependent (V-ATPase–dependent) functions are critical for neural proteostasis and are involved in neurodegeneration and brain tumorigenesis. We identified a patient with fulminant neurodegeneration of the developing brain carrying a de novo splice site variant in ATP6AP2 encoding an accessory protein of the V-ATPase. Functional studies of induced pluripotent stem cell–derived (iPSC-derived) neurons from this patient revealed reduced spontaneous activity and severe deficiency in lysosomal acidification and protein degradation leading to neuronal cell death. These deficiencies could be rescued by expression of full-length ATP6AP2. Conditional deletion of Atp6ap2 in developing mouse brain impaired V-ATPase–dependent functions, causing impaired neural stem cell self-renewal, premature neuronal differentiation, and apoptosis resulting in degeneration of nearly the entire cortex. In vitro studies revealed that ATP6AP2 deficiency decreases V-ATPase membrane assembly and increases endosomal-lysosomal fusion. We conclude that ATP6AP2 is a key mediator of V-ATPase–dependent signaling and protein degradation in the developing human central nervous system.

Authors

Takuo Hirose, Alfredo Cabrera-Socorro, David Chitayat, Thomas Lemonnier, Olivier Féraud, Carmen Cifuentes-Diaz, Nicolas Gervasi, Cedric Mombereau, Tanay Ghosh, Loredana Stoica, Jeanne d’Arc Al Bacha, Hiroshi Yamada, Marcel A. Lauterbach, Marc Guillon, Kiriko Kaneko, Joy W. Norris, Komudi Siriwardena, Susan Blasér, Jérémie Teillon, Roberto Mendoza-Londono, Marion Russeau, Julien Hadoux, Sadayoshi Ito, Pierre Corvol, Maria G. Matheus, Kenton R. Holden, Kohji Takei, Valentina Emiliani, Annelise Bennaceur-Griscelli, Charles E. Schwartz, Genevieve Nguyen, Matthias Groszer

×

Membrane assembly of aquaporin-4 autoantibodies regulates classical complement activation in neuromyelitis optica
John Soltys, … , Gregory P. Owens, Jeffrey L. Bennett
John Soltys, … , Gregory P. Owens, Jeffrey L. Bennett
Published April 8, 2019
Citation Information: J Clin Invest. 2019. https://doi.org/10.1172/JCI122942.
View: Text | PDF

Membrane assembly of aquaporin-4 autoantibodies regulates classical complement activation in neuromyelitis optica

  • Text
  • PDF
Abstract

Neuromyelitis optica (NMO) is an autoimmune CNS disorder mediated by pathogenic aquaporin-4 (AQP4) water channel autoantibodies (AQP4-IgG). Although AQP4-IgG–driven complement-dependent cytotoxicity (CDC) is critical for the formation of NMO lesions, the molecular mechanisms governing optimal classical pathway activation are unknown. We investigated the molecular determinants driving CDC in NMO using recombinant AQP4–specific autoantibodies (AQP4 rAbs) derived from affected patients. We identified a group of AQP4 rAbs targeting a distinct extracellular loop C epitope that demonstrated enhanced CDC on target cells. Targeted mutations of AQP4 rAb Fc domains that enhance or diminish C1q binding or antibody Fc-Fc interactions showed that optimal CDC was driven by the assembly of multimeric rAb platforms that increase multivalent C1q binding and facilitate C1q activation. A peptide that blocks antibody Fc-Fc interaction inhibited CDC induced by AQP4 rAbs and polyclonal NMO patient sera. Super-resolution microscopy revealed that AQP4 rAbs with enhanced CDC preferentially formed organized clusters on supramolecular AQP4 orthogonal arrays, linking epitope-dependent multimeric assembly with enhanced C1q binding and activation. The resulting model of AQP4-IgG CDC provides a framework for understanding classical complement activation in human autoantibody–mediated disorders and identifies a potential new therapeutic avenue for treating NMO.

Authors

John Soltys, Yiting Liu, Alanna Ritchie, Scott Wemlinger, Kristin Schaller, Hannah Schumann, Gregory P. Owens, Jeffrey L. Bennett

×

The gliotransmitter ACBP controls feeding and energy homeostasis via the melanocortin system
Khalil Bouyakdan, … , Xavier Fioramonti, Thierry Alquier
Khalil Bouyakdan, … , Xavier Fioramonti, Thierry Alquier
Published April 2, 2019
Citation Information: J Clin Invest. 2019. https://doi.org/10.1172/JCI123454.
View: Text | PDF

The gliotransmitter ACBP controls feeding and energy homeostasis via the melanocortin system

  • Text
  • PDF
Abstract

Glial cells have emerged as key players in the central control of energy balance and etiology of obesity. Astrocytes play a central role in neural communication via the release of gliotransmitters. Acyl-CoA binding protein (ACBP)-derived endozepines are secreted peptides that modulate the GABAA receptor. In the hypothalamus, ACBP is enriched in arcuate nucleus (ARC) astrocytes, ependymocytes and tanycytes. Central administration of the endozepine octadecaneuropeptide (ODN) reduces feeding and improves glucose tolerance, yet the contribution of endogenous ACBP in energy homeostasis is unknown. We demonstrated that ACBP deletion in GFAP+ astrocytes, but not in Nkx2.1-lineage neural cells, promoted diet-induced hyperphagia and obesity in both male and female mice, an effect prevented by viral rescue of ACBP in ARC astrocytes. ACBP-astrocytes were observed in apposition with proopiomelanocortin (POMC) neurons and ODN selectively activated POMC neurons through the ODN-GPCR but not GABAA, and supressed feeding while increasing carbohydrate utilization via the melanocortin system. Similarly, ACBP overexpression in ARC astrocytes reduced feeding and weight gain. Finally, the ODN-GPCR agonist decreased feeding and promoted weight loss in ob/ob mice. These findings uncover ACBP as an ARC gliopeptide playing a key role in energy balance control and exerting strong anorectic effects via the central melanocortin system.

Authors

Khalil Bouyakdan, Hugo Martin, Fabienne Liénard, Lionel Budry, Bouchra Taib, Demetra Rodaros, Chloé Chrétien, Éric Biron, Zoé Husson, Daniela Cota, Luc Pénicaud, Stephanie Fulton, Xavier Fioramonti, Thierry Alquier

×

Opioid-galanin receptor heteromers mediate the dopaminergic effects of opioids
Ning-Sheng Cai, … , Annabelle M. Belcher, Sergi Ferré
Ning-Sheng Cai, … , Annabelle M. Belcher, Sergi Ferré
Published March 26, 2019
Citation Information: J Clin Invest. 2019. https://doi.org/10.1172/JCI126912.
View: Text | PDF

Opioid-galanin receptor heteromers mediate the dopaminergic effects of opioids

  • Text
  • PDF
Abstract

Identifying non-addictive opioid medications is a high priority in medical sciences, but μ-opioid receptors mediate both the analgesic and addictive effects of opioids. We found a significant pharmacodynamic difference between morphine and methadone that is determined entirely by heteromerization of μ-opioid receptors with galanin Gal1 receptors, rendering a profound decrease in the potency of methadone. This was explained by methadone’s weaker proficiency to activate the dopaminergic system as compared to morphine and predicted a dissociation of therapeutic versus euphoric effects of methadone, which was corroborated by a significantly lower incidence of self-report of “high” in methadone-maintained patients. These results suggest that μ-opioid-Gal1 receptor heteromers mediate the dopaminergic effects of opioids that may lead to a lower addictive liability of opioids with selective low potency for the μ-opioid-Gal1 receptor heteromer, exemplified by methadone.

Authors

Ning-Sheng Cai, César Quiroz, Jordi Bonaventura, Alessandro Bonifazi, Thomas O. Cole, Julia Purks, Amy S. Billing, Ebonie Massey, Michael Wagner, Eric D. Wish, Xavier Guitart, William Rea, Sherry Lam, Estefanía Moreno, Verònica Casadó-Anguera, Aaron D. Greenblatt, Arthur E. Jacobson, Kenner C. Rice, Vicent Casadó, Amy H. Newman, John W. Winkelman, Michael Michaelides, Eric Weintraub, Nora D. Volkow, Annabelle M. Belcher, Sergi Ferré

×
  • ← Previous
  • 1
  • 2
  • 3
  • 4
  • 5
  • …
  • 38
  • 39
  • Next →
DREAM suppression in Huntington’s disease
José Naranjo and colleagues reveal that downregulation of DREAM mediates derepression of ATF6, and this elevation of ATF6 plays an early neuroprotective role in Huntington’s disease…
Published January 11, 2016
Scientific Show StopperNeuroscience

Extra-cerebellar motor symptoms in Angelman’s syndrome
Caroline Bruinsma and colleagues evaluated cerebellar involvement in Angelman’s Syndrome motor deficits…
Published October 20, 2015
Scientific Show StopperNeuroscience

An epigenetic intervention for neurodegenerative diseases
Eva Benito and colleagues demonstrate that SAHA, a histone-deacetylase inhibitor, improves spatial memory and selectively regulates the neuronal epigenome in a mouse model of neurodegeneration…
Published August 17, 2015
Scientific Show StopperNeuroscience

Genetic and environmental interactions in Parkinson’s disease
Alevtina Zharikov and colleagues reveal that interplay between α-synuclein and environmental toxin exposure influences parkinsonian neurodegeneration…
Published June 15, 2015
Scientific Show StopperNeuroscience

TREM2 keeps myelinated axons under wraps
Pietro Poliani, Yaming Wang, and colleagues demonstrate that TREM2 deficiency reduces age-associated expansion of microglia and microglia-dependent remyelination…
Published April 20, 2015
Scientific Show StopperNeuroscience

Synergy among Parkinson’s disease-associated genes
Durga Meka and colleagues demonstrate that crosstalk between parkin and RET maintains mitochondrial integrity and protects dopaminergic neurons…
Published March 30, 2015
Scientific Show StopperNeuroscience

A model of periventricular leukomalacia
Tamar Licht, Talia Dor-Wollman and colleagues demonstrate that specific vulnerability of immature blood vessels surrounding ventricles predisposes to hypoxia-induced periventricular leukomalacia…
Published February 17, 2015
Scientific Show StopperNeuroscience
Advertisement
Follow JCI:
Copyright © 2019 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts