Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews...
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • Reparative Immunology (Jul 2019)
    • Allergy (Apr 2019)
    • Biology of familial cancer predisposition syndromes (Feb 2019)
    • Mitochondrial dysfunction in disease (Aug 2018)
    • Lipid mediators of disease (Jul 2018)
    • Cellular senescence in human disease (Apr 2018)
    • View all review series...
  • Collections
    • Recently published
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Scientific Show Stoppers
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • About
  • Editors
  • Consulting Editors
  • For authors
  • Current issue
  • Past issues
  • By specialty
  • Subscribe
  • Alerts
  • Advertise
  • Contact
  • Conversations with Giants in Medicine
  • Author's Takes
  • Recently published
  • Brief Reports
  • Technical Advances
  • Commentaries
  • Editorials
  • Hindsight
  • Review series
  • Reviews
  • The Attending Physician
  • First Author Perspectives
  • Scientific Show Stoppers
  • Top read articles
  • Concise Communication

Gastroenterology

  • 107 Articles
  • 6 Posts
  • ← Previous
  • 1
  • 2
  • …
  • 9
  • 10
  • 11
  • Next →
Milk fat globule–EGF factor 8/lactadherin plays a crucial role in maintenance and repair of murine intestinal epithelium
Heng-Fu Bu, … , Barry D. Shur, Xiao-Di Tan
Heng-Fu Bu, … , Barry D. Shur, Xiao-Di Tan
Published November 15, 2007
Citation Information: J Clin Invest. 2007. https://doi.org/10.1172/JCI31841.
View: Text | PDF

Milk fat globule–EGF factor 8/lactadherin plays a crucial role in maintenance and repair of murine intestinal epithelium

  • Text
  • PDF
Abstract

Milk fat globule–EGF factor 8 (MFG-E8)/lactadherin participates in several cell surface–mediated regulatory events. Although its mRNA is present in the gut, the physiological roles of MFG-E8 in the intestinal mucosa have not been explored. Here we show that MFG-E8 was expressed in intestinal lamina propria macrophages from mice. Using a wound-healing assay, MFG-E8 was shown to promote the migration of intestinal epithelial cells through a PKCε-dependent mechanism. MFG-E8 bound to phosphatidylserine and triggered reorientation of the actin cytoskeleton in intestinal epithelial cells at the wound edge. Depleting MFG-E8 in mice by administration of anti–MFG-E8 antibody or targeted deletion of the MFG-E8 gene resulted in a slowing of enterocyte migration along the crypt-villus axis and focal mucosal injury. Moreover, in septic mice, intestinal MFG-E8 expression was downregulated, which correlated with intestinal injury, interrupted enterocyte migration, and impaired restitution. Treatment with recombinant MFG-E8 restored enterocyte migration, whereas deletion of MFG-E8 impeded mucosal healing in mice with sepsis. These results suggest that a decrease in intestinal MFG-E8 impairs intestinal mucosal repair in sepsis. Together, our data indicate that MFG-E8 plays an important role in the maintenance of intestinal epithelial homeostasis and the promotion of mucosal healing and suggest that recombinant MFG-E8 may be beneficial for the treatment of bowel injuries.

Authors

Heng-Fu Bu, Xiu-Li Zuo, Xiao Wang, Michael A. Ensslin, Vjola Koti, Wei Hsueh, Adam S. Raymond, Barry D. Shur, Xiao-Di Tan

×

Crucial role of the protein C pathway in governing microvascular inflammation in inflammatory bowel disease
Franco Scaldaferri, … , Brian W. Grinnell, Silvio Danese
Franco Scaldaferri, … , Brian W. Grinnell, Silvio Danese
Published July 2, 2007
Citation Information: J Clin Invest. 2007;117(7):1951-1960. https://doi.org/10.1172/JCI31027.
View: Text | PDF

Crucial role of the protein C pathway in governing microvascular inflammation in inflammatory bowel disease

  • Text
  • PDF
Abstract

Endothelial protein C receptor (EPCR) and thrombomodulin (TM) are expressed at high levels in the resting microvasculature and convert protein C (PC) into its activated form, which is a potent anticoagulant and antiinflammatory molecule. Here we provide evidence that in Crohn disease (CD) and ulcerative colitis (UC), the 2 major forms of inflammatory bowel disease (IBD), there was loss of expression of endothelial EPCR and TM, which in turns caused impairment of PC activation by the inflamed mucosal microvasculature. In isolated human intestinal endothelial cells, administration of recombinant activated PC had a potent antiinflammatory effect, as demonstrated by downregulated cytokine-dependent cell adhesion molecule expression and chemokine production as well as inhibited leukocyte adhesion. In vivo, administration of activated PC was therapeutically effective in ameliorating experimental colitis as evidenced by reduced weight loss, disease activity index, and histological colitis scores as well as inhibited leukocyte adhesion to the inflamed intestinal vessels. The results suggest that the PC pathway represents a new system crucially involved in governing intestinal homeostasis mediated by the mucosal microvasculature. Restoring the PC pathway may represent a new therapeutic approach to suppress intestinal inflammation in IBD.

Authors

Franco Scaldaferri, Miquel Sans, Stefania Vetrano, Cristina Graziani, Raimondo De Cristofaro, Bruce Gerlitz, Alessandro Repici, Vincenzo Arena, Alberto Malesci, Julian Panes, Brian W. Grinnell, Silvio Danese

×

Proteasome-mediated degradation of IκBα and processing of p105 in Crohn disease and ulcerative colitis
Alexander Visekruna, … , Ruth Schmidt-Ullrich, Ulrich Steinhoff
Alexander Visekruna, … , Ruth Schmidt-Ullrich, Ulrich Steinhoff
Published December 1, 2006
Citation Information: J Clin Invest. 2006;116(12):3195-3203. https://doi.org/10.1172/JCI28804.
View: Text | PDF

Proteasome-mediated degradation of IκBα and processing of p105 in Crohn disease and ulcerative colitis

  • Text
  • PDF
Abstract

Enhanced NF-κB activity is involved in the pathology of both forms of inflammatory bowel disease (IBD), Crohn disease (CD) and ulcerative colitis (UC). Here we analyzed the mechanism of proteasome-mediated NF-κB activation in CD and UC. Our studies demonstrate that the subunit composition and the proteolytic function of proteasomes differ between UC and CD. High expression of the immunoproteasome subunits β1i and β2i is characteristic of the inflamed mucosa of CD. In line with this, we found enhanced processing of NF-κB precursor p105 and degradation of inhibitor of NF-κB, IκBα, by immunoproteasomes isolated from the mucosa of CD patients. In comparison with healthy controls and CD patients, UC patients exhibited an intermediate phenotype regarding the proteasome-mediated processing/degradation of NF-κB components. Finally, increased expression of the NF-κB family member c-Rel in the inflamed mucosa of CD patients suggests that p50/c-Rel is important for IFN-γ–mediated induction of immunoproteasomes via IL-12–driven Th1 responses. These findings suggest that distinct proteasome subunits influence the intensity of NF-κB–mediated inflammation in IBD patients.

Authors

Alexander Visekruna, Thorsten Joeris, Daniel Seidel, Anjo Kroesen, Christoph Loddenkemper, Martin Zeitz, Stefan H.E. Kaufmann, Ruth Schmidt-Ullrich, Ulrich Steinhoff

×

Coordinated epithelial NHE3 inhibition and barrier dysfunction are required for TNF-mediated diarrhea in vivo
Daniel R. Clayburgh, … , Yang-Xin Fu, Jerrold R. Turner
Daniel R. Clayburgh, … , Yang-Xin Fu, Jerrold R. Turner
Published October 2, 2006
Citation Information: J Clin Invest. 2006;116(10):2682-2694. https://doi.org/10.1172/JCI29218.
View: Text | PDF

Coordinated epithelial NHE3 inhibition and barrier dysfunction are required for TNF-mediated diarrhea in vivo

  • Text
  • PDF
Abstract

Acute T cell–mediated diarrhea is associated with increased mucosal expression of proinflammatory cytokines, including the TNF superfamily members TNF and LIGHT. While we have previously shown that epithelial barrier dysfunction induced by myosin light chain kinase (MLCK) is required for the development of diarrhea, MLCK inhibition does not completely restore water absorption. In contrast, although TNF-neutralizing antibodies completely restore water absorption after systemic T cell activation, barrier function is only partially corrected. This suggests that, while barrier dysfunction is critical, other processes must be involved in T cell–mediated diarrhea. To define these processes in vivo, we asked whether individual cytokines might regulate different events in T cell–mediated diarrhea. Both TNF and LIGHT caused MLCK-dependent barrier dysfunction. However, while TNF caused diarrhea, LIGHT enhanced intestinal water absorption. Moreover, TNF, but not LIGHT, inhibited Na+ absorption due to TNF-induced internalization of the brush border Na+/H+ exchanger NHE3. LIGHT did not cause NHE3 internalization. PKCα activation by TNF was responsible for NHE3 internalization, and pharmacological or genetic PKCα inhibition prevented NHE3 internalization, Na+ malabsorption, and diarrhea despite continued barrier dysfunction. These data demonstrate the necessity of coordinated Na+ malabsorption and barrier dysfunction in TNF-induced diarrhea and provide insight into mechanisms of intestinal water transport.

Authors

Daniel R. Clayburgh, Mark W. Musch, Michael Leitges, Yang-Xin Fu, Jerrold R. Turner

×

HLA-DQ2 and -DQ8 signatures of gluten T cell epitopes in celiac disease
Stig Tollefsen, … , Knut E.A. Lundin, Ludvig M. Sollid
Stig Tollefsen, … , Knut E.A. Lundin, Ludvig M. Sollid
Published August 1, 2006
Citation Information: J Clin Invest. 2006;116(8):2226-2236. https://doi.org/10.1172/JCI27620.
View: Text | PDF

HLA-DQ2 and -DQ8 signatures of gluten T cell epitopes in celiac disease

  • Text
  • PDF
Abstract

Celiac disease is associated with HLA-DQ2 and, to a lesser extent, HLA-DQ8. Type 1 diabetes is associated with the same DQ molecules in the opposite order and with possible involvement of trans-encoded DQ heterodimers. T cells that are reactive with gluten peptides deamidated by transglutaminase 2 and invariably restricted by DQ2 or DQ8 can be isolated from celiac lesions. We used intestinal T cells from celiac patients to map DQ2 and DQ8 epitopes within 2 representative gluten proteins, α-gliadin AJ133612 and γ-gliadin M36999. For α-gliadin, DQ2- and DQ8-restricted T cells recognized deamidated peptides of 2 separate regions. For γ-gliadin, DQ2- and DQ8-restricted T cells recognized deamidated peptides of the same region. Some γ-gliadin peptides were recognized by T cells in the context of DQ2 or DQ8 when bound in exactly the same registers, but with different requirements for deamidation; deamidation at peptide position 4 (P4) was important for DQ2-restricted T cells, whereas deamidation at P1 and/or P9 was important for DQ8-restricted T cells. Peptides combining the DQ2 and DQ8 signatures could be presented by DQ2, DQ8, and trans-encoded DQ heterodimers. Our findings shed light on the basis for the HLA associations in celiac disease and type 1 diabetes.

Authors

Stig Tollefsen, Helene Arentz-Hansen, Burkhard Fleckenstein, Øyvind Molberg, Melinda Ráki, William W. Kwok, Günther Jung, Knut E.A. Lundin, Ludvig M. Sollid

×

Neonatal Fc receptor for IgG regulates mucosal immune responses to luminal bacteria
Masaru Yoshida, … , Wayne I. Lencer, Richard S. Blumberg
Masaru Yoshida, … , Wayne I. Lencer, Richard S. Blumberg
Published August 1, 2006
Citation Information: J Clin Invest. 2006;116(8):2142-2151. https://doi.org/10.1172/JCI27821.
View: Text | PDF

Neonatal Fc receptor for IgG regulates mucosal immune responses to luminal bacteria

  • Text
  • PDF
Abstract

The neonatal Fc receptor for IgG (FcRn) plays a major role in regulating host IgG levels and transporting IgG and associated antigens across polarized epithelial barriers. Selective expression of FcRn in the epithelium is shown here to be associated with secretion of IgG into the lumen that allows for defense against an epithelium-associated pathogen (Citrobacter rodentium). This pathway of host resistance to a bacterial pathogen as mediated by FcRn involves retrieval of bacterial antigens from the lumen and initiation of adaptive immune responses in regional lymphoid structures. Epithelial-associated FcRn, through its ability to secrete and absorb IgG, may thus integrate luminal antigen encounters with systemic immune compartments and as such provide essential host defense and immunoregulatory functions at the mucosal surfaces.

Authors

Masaru Yoshida, Kanna Kobayashi, Timothy T. Kuo, Lynn Bry, Jonathan N. Glickman, Steven M. Claypool, Arthur Kaser, Takashi Nagaishi, Darren E. Higgins, Emiko Mizoguchi, Yoshio Wakatsuki, Derry C. Roopenian, Atsushi Mizoguchi, Wayne I. Lencer, Richard S. Blumberg

×

Nitrite in saliva increases gastric mucosal blood flow and mucus thickness
Håkan Björne, … , Lena Holm, Jon O. Lundberg
Håkan Björne, … , Lena Holm, Jon O. Lundberg
Published January 1, 2004
Citation Information: J Clin Invest. 2004;113(1):106-114. https://doi.org/10.1172/JCI19019.
View: Text | PDF | Erratum

Nitrite in saliva increases gastric mucosal blood flow and mucus thickness

  • Text
  • PDF
Abstract

Salivary nitrate from dietary or endogenous sources is reduced to nitrite by oral bacteria. In the acidic stomach, nitrite is further reduced to NO and related compounds, which have potential biological activity. We used an in vivo rat model as a bioassay to test effects of human saliva on gastric mucosal blood flow and mucus thickness. Gastric mucosal blood flow and mucus thickness were measured after topical administration of human saliva in HCl. The saliva was collected either after fasting (low in nitrite) or after ingestion of sodium nitrate (high in nitrite). In additional experiments, saliva was exchanged for sodium nitrite at different doses. Mucosal blood flow was increased after luminal application of nitrite-rich saliva, whereas fasting saliva had no effects. Also, mucus thickness increased in response to nitrite-rich saliva. The effects of nitrite-rich saliva were similar to those of topically applied sodium nitrite. Nitrite-mediated effects were associated with generation of NO and S-nitrosothiols. In addition, pretreatment with an inhibitor of guanylyl cyclase markedly inhibited nitrite-mediated effects on blood flow. We conclude that nitrite-containing human saliva given luminally increases gastric mucosal blood flow and mucus thickness in the rat. These effects are likely mediated through nonenzymatic generation of NO via activation of guanylyl cyclase. This supports a gastroprotective role of salivary nitrate/nitrite.

Authors

Håkan Björne, Joel Petersson, Mia Phillipson, Eddie Weitzberg, Lena Holm, Jon O. Lundberg

×
  • ← Previous
  • 1
  • 2
  • …
  • 9
  • 10
  • 11
  • Next →
Loss of intestinal integrity
Rocío López-Posadas and colleagues reveal that loss of Rho-A activation and signaling promotes loss of intestinal barrier function in inflammatory bowel disease…
Published January 11, 2016
Scientific Show StopperGastroenterology

Insight into neonatal necrotizing enterocolitis
Charlotte Egan and colleagues reveal that intestinal TLR4-mediated lymphocyte infiltration and polarization toward a Th17 population promotes neonatal necrotizing enterocolitis…
Published December 21, 2015
Scientific Show StopperGastroenterology

The intestinal healing power of mesenchymal stem cells
Nicholas Manieri and colleagues demonstrate that mesenchymal stem cells inhibit intestinal ulcer formation by stimulating angiogenesis …
Published August 17, 2015
Scientific Show StopperGastroenterology

Repairing wounds with annexin A1
Giovanna Leoni and colleagues demonstrate that extracellular vesicles and nanoparticles contacting annexin A1 activate mucosal wound repair pathways…
Published February 9, 2015
Scientific Show StopperGastroenterology

Goblet cells contribute to a sticky situation
Liu and colleges demonstrate that goblet cell dysfunction in the cystic fibrosis mouse intestine results from an epithelial-autonomous effect of CFTR-deficiency...
Published February 2, 2015
Scientific Show StopperGastroenterology

Enteroendocrine cells make the connection
Diego Bohórquez and colleagues demonstrate that enteroendocrine cells directly interact with nerves in the gut mucosa…
Published January 2, 2015
Scientific Show StopperGastroenterology
Advertisement
Follow JCI:
Copyright © 2019 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts