Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews...
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • Reparative Immunology (Jul 2019)
    • Allergy (Apr 2019)
    • Biology of familial cancer predisposition syndromes (Feb 2019)
    • Mitochondrial dysfunction in disease (Aug 2018)
    • Lipid mediators of disease (Jul 2018)
    • Cellular senescence in human disease (Apr 2018)
    • View all review series...
  • Collections
    • Recently published
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Scientific Show Stoppers
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • About
  • Editors
  • Consulting Editors
  • For authors
  • Current issue
  • Past issues
  • By specialty
  • Subscribe
  • Alerts
  • Advertise
  • Contact
  • Conversations with Giants in Medicine
  • Author's Takes
  • Recently published
  • Brief Reports
  • Technical Advances
  • Commentaries
  • Editorials
  • Hindsight
  • Review series
  • Reviews
  • The Attending Physician
  • First Author Perspectives
  • Scientific Show Stoppers
  • Top read articles
  • Concise Communication

Concise Communication

  • 92 Articles
  • 0 Posts
  • ← Previous
  • 1
  • 2
  • …
  • 7
  • 8
  • 9
  • 10
  • Next →
Expression of Piwi protein MIWI2 defines a distinct population of multiciliated cells
Gregory A. Wasserman, … , Dónal O’Carroll, Matthew R. Jones
Gregory A. Wasserman, … , Dónal O’Carroll, Matthew R. Jones
Published October 2, 2017; First published September 18, 2017
Citation Information: J Clin Invest. 2017;127(10):3866-3876. https://doi.org/10.1172/JCI94639.
View: Text | PDF

Expression of Piwi protein MIWI2 defines a distinct population of multiciliated cells

  • Text
  • PDF
Abstract

P-element–induced wimpy testes (Piwi) proteins are known for suppressing retrotransposon activation in the mammalian germline. However, whether Piwi protein or Piwi-dependent functions occur in the mammalian soma is unclear. Contrary to germline-restricted expression, we observed that Piwi-like Miwi2 mRNA is indeed expressed in epithelial cells of the lung in adult mice and that it is induced during pneumonia. Further investigation revealed that MIWI2 protein localized to the cytoplasm of a discrete population of multiciliated airway epithelial cells. Isolation and next-generation sequencing of MIWI2-positive multiciliated cells revealed that they are phenotypically distinct from neighboring MIWI2-negative multiciliated cells. Mice lacking MIWI2 exhibited an altered balance of airway epithelial cells, demonstrating fewer multiciliated cells and an increase in club cells. During pneumococcal pneumonia, Miwi2-deficient mice exhibited increased expression of inflammatory mediators and increased immune cell recruitment, leading to enhanced bacterial clearance. Taken together, our data delineate MIWI2-dependent functions outside of the germline and demonstrate the presence of distinct subsets of airway multiciliated cells that can be discriminated by MIWI2 expression. By demonstrating roles for MIWI2 in airway cell identity and pulmonary innate immunity, these studies elucidate unanticipated physiological functions for Piwi proteins in somatic tissues.

Authors

Gregory A. Wasserman, Aleksander D. Szymaniak, Anne C. Hinds, Kazuko Yamamoto, Hirofumi Kamata, Nicole M.S. Smith, Kristie L. Hilliard, Claudia Carrieri, Adam T. Labadorf, Lee J. Quinton, Xingbin Ai, Xaralabos Varelas, Felicia Chen, Joseph P. Mizgerd, Alan Fine, Dónal O’Carroll, Matthew R. Jones

×

No evidence of HIV replication in children on antiretroviral therapy
Gert U. Van Zyl, … , John W. Mellors, Mary F. Kearney
Gert U. Van Zyl, … , John W. Mellors, Mary F. Kearney
Published October 2, 2017; First published September 11, 2017
Citation Information: J Clin Invest. 2017;127(10):3827-3834. https://doi.org/10.1172/JCI94582.
View: Text | PDF

No evidence of HIV replication in children on antiretroviral therapy

  • Text
  • PDF
Abstract

It remains controversial whether current antiretroviral therapy (ART) fully suppresses the cycles of HIV replication and viral evolution in vivo. If replication persists in sanctuary sites such as the lymph nodes, a high priority should be placed on improving ART regimes to target these sites. To investigate the question of ongoing viral replication on current ART regimens, we analyzed HIV populations in longitudinal samples from 10 HIV-1–infected children who initiated ART when viral diversity was low. Eight children started ART at less than ten months of age and showed suppression of plasma viremia for seven to nine years. Two children had uncontrolled viremia for fifteen and thirty months, respectively, before viremia suppression, and served as positive controls for HIV replication and evolution. These latter 2 children showed clear evidence of virus evolution, whereas multiple methods of analysis bore no evidence of virus evolution in any of the 8 children with viremia suppression on ART. Phylogenetic trees simulated with the recently reported evolutionary rate of HIV-1 on ART of 6 × 10–4 substitutions/site/month bore no resemblance to the observed data. Taken together, these data refute the concept that ongoing HIV replication is common with ART and is the major barrier to curing HIV-1 infection.

Authors

Gert U. Van Zyl, Mary Grace Katusiime, Ann Wiegand, William R. McManus, Michael J. Bale, Elias K. Halvas, Brian Luke, Valerie F. Boltz, Jonathan Spindler, Barbara Laughton, Susan Engelbrecht, John M. Coffin, Mark F. Cotton, Wei Shao, John W. Mellors, Mary F. Kearney

×

Dysfunction of the MDM2/p53 axis is linked to premature aging
Davor Lessel, … , Carol Prives, Christian Kubisch
Davor Lessel, … , Carol Prives, Christian Kubisch
Published October 2, 2017; First published August 28, 2017
Citation Information: J Clin Invest. 2017;127(10):3598-3608. https://doi.org/10.1172/JCI92171.
View: Text | PDF

Dysfunction of the MDM2/p53 axis is linked to premature aging

  • Text
  • PDF
Abstract

The tumor suppressor p53, a master regulator of the cellular response to stress, is tightly regulated by the E3 ubiquitin ligase MDM2 via an autoregulatory feedback loop. In addition to its well-established role in tumorigenesis, p53 has also been associated with aging in mice. Several mouse models with aberrantly increased p53 activity display signs of premature aging. However, the relationship between dysfunction of the MDM2/p53 axis and human aging remains elusive. Here, we have identified an antiterminating homozygous germline mutation in MDM2 in a patient affected by a segmental progeroid syndrome. We show that this mutation abrogates MDM2 activity, thereby resulting in enhanced levels and stability of p53. Analysis of the patient’s primary cells, genome-edited cells, and in vitro and in vivo analyses confirmed the MDM2 mutation’s aberrant regulation of p53 activity. Functional data from a zebrafish model further demonstrated that mutant Mdm2 was unable to rescue a p53-induced apoptotic phenotype. Altogether, our findings indicate that mutant MDM2 is a likely driver of the observed segmental form of progeria.

Authors

Davor Lessel, Danyi Wu, Carlos Trujillo, Thomas Ramezani, Ivana Lessel, Mohammad K. Alwasiyah, Bidisha Saha, Fuki M. Hisama, Katrin Rading, Ingrid Goebel, Petra Schütz, Günter Speit, Josef Högel, Holger Thiele, Gudrun Nürnberg, Peter Nürnberg, Matthias Hammerschmidt, Yan Zhu, David R. Tong, Chen Katz, George M. Martin, Junko Oshima, Carol Prives, Christian Kubisch

×

Pericyte-targeting prodrug overcomes tumor resistance to vascular disrupting agents
Minfeng Chen, … , Dongmei Zhang, Wencai Ye
Minfeng Chen, … , Dongmei Zhang, Wencai Ye
Published October 2, 2017; First published August 28, 2017
Citation Information: J Clin Invest. 2017;127(10):3689-3701. https://doi.org/10.1172/JCI94258.
View: Text | PDF

Pericyte-targeting prodrug overcomes tumor resistance to vascular disrupting agents

  • Text
  • PDF
Abstract

Blood vessels in the tumor periphery have high pericyte coverage and are resistant to vascular disrupting agents (VDAs). VDA treatment resistance leads to a viable peripheral tumor rim that contributes to treatment failure and disease recurrence. Here, we provide evidence to support a hypothesis that shifting the target of VDAs from tumor vessel endothelial cells to pericytes disrupts tumor peripheral vessels and the viable rim, circumventing VDA treatment resistance. Through chemical engineering, we developed Z-GP-DAVLBH (from the tubulin-binding VDA desacetylvinblastine monohydrazide [DAVLBH]) as a prodrug that can be selectively activated by fibroblast activation protein α (FAPα) in tumor pericytes. Z-GP-DAVLBH selectively destroys the cytoskeleton of FAPα-expressing tumor pericytes, disrupting blood vessels both within the core and around the periphery of tumors. As a result, Z-GP-DAVLBH treatment eradicated the otherwise VDA-resistant tumor rim and led to complete regression of tumors in multiple lines of xenografts without producing the drug-related toxicity that is associated with similar doses of DAVLBH. This study demonstrates that targeting tumor pericytes with an FAPα-activated VDA prodrug represents a potential vascular disruption strategy in overcoming tumor resistance to VDA treatments.

Authors

Minfeng Chen, Xueping Lei, Changzheng Shi, Maohua Huang, Xiaobo Li, Baojian Wu, Zhengqiu Li, Weili Han, Bin Du, Jianyang Hu, Qiulin Nie, Weiqian Mai, Nan Ma, Nanhui Xu, Xinyi Zhang, Chunlin Fan, Aihua Hong, Minghan Xia, Liangping Luo, Ande Ma, Hongsheng Li, Qiang Yu, Heru Chen, Dongmei Zhang, Wencai Ye

×

Activation of tumor suppressor protein PP2A inhibits KRAS-driven tumor growth
Jaya Sangodkar, … , Michael Ohlmeyer, Goutham Narla
Jaya Sangodkar, … , Michael Ohlmeyer, Goutham Narla
Published June 1, 2017; First published May 15, 2017
Citation Information: J Clin Invest. 2017;127(6):2081-2090. https://doi.org/10.1172/JCI89548.
View: Text | PDF

Activation of tumor suppressor protein PP2A inhibits KRAS-driven tumor growth

  • Text
  • PDF
Abstract

Targeted cancer therapies, which act on specific cancer-associated molecular targets, are predominantly inhibitors of oncogenic kinases. While these drugs have achieved some clinical success, the inactivation of kinase signaling via stimulation of endogenous phosphatases has received minimal attention as an alternative targeted approach. Here, we have demonstrated that activation of the tumor suppressor protein phosphatase 2A (PP2A), a negative regulator of multiple oncogenic signaling proteins, is a promising therapeutic approach for the treatment of cancers. Our group previously developed a series of orally bioavailable small molecule activators of PP2A, termed SMAPs. We now report that SMAP treatment inhibited the growth of KRAS-mutant lung cancers in mouse xenografts and transgenic models. Mechanistically, we found that SMAPs act by binding to the PP2A Aα scaffold subunit to drive conformational changes in PP2A. These results show that PP2A can be activated in cancer cells to inhibit proliferation. Our strategy of reactivating endogenous PP2A may be applicable to the treatment of other diseases and represents an advancement toward the development of small molecule activators of tumor suppressor proteins.

Authors

Jaya Sangodkar, Abbey Perl, Rita Tohme, Janna Kiselar, David B. Kastrinsky, Nilesh Zaware, Sudeh Izadmehr, Sahar Mazhar, Danica D. Wiredja, Caitlin M. O’Connor, Divya Hoon, Neil S. Dhawan, Daniela Schlatzer, Shen Yao, Daniel Leonard, Alain C. Borczuk, Giridharan Gokulrangan, Lifu Wang, Elena Svenson, Caroline C. Farrington, Eric Yuan, Rita A. Avelar, Agnes Stachnik, Blake Smith, Vickram Gidwani, Heather M. Giannini, Daniel McQuaid, Kimberly McClinch, Zhizhi Wang, Alice C. Levine, Rosalie C. Sears, Edward Y. Chen, Qiaonan Duan, Manish Datt, Shozeb Haider, Avi Ma’ayan, Analisa DiFeo, Neelesh Sharma, Matthew D. Galsky, David L. Brautigan, Yiannis A. Ioannou, Wenqing Xu, Mark R. Chance, Michael Ohlmeyer, Goutham Narla

×

Reducing expression of synapse-restricting protein Ephexin5 ameliorates Alzheimer’s-like impairment in mice
Gabrielle L. Sell, … , Thomas B. Schaffer, Seth S. Margolis
Gabrielle L. Sell, … , Thomas B. Schaffer, Seth S. Margolis
Published May 1, 2017; First published March 27, 2017
Citation Information: J Clin Invest. 2017;127(5):1646-1650. https://doi.org/10.1172/JCI85504.
View: Text | PDF

Reducing expression of synapse-restricting protein Ephexin5 ameliorates Alzheimer’s-like impairment in mice

  • Text
  • PDF
Abstract

Accumulation of amyloid-β (Aβ) protein may cause synapse degeneration and cognitive impairment in Alzheimer’s disease (AD) by reactivating expression of the developmental synapse repressor protein Ephexin5 (also known as ARHGEF15). Here, we have reported that Aβ is sufficient to acutely promote the production of Ephexin5 in mature hippocampal neurons and in mice expressing human amyloid precursor protein (hAPP mice), a model for familial AD that produces high brain levels of Aβ. Ephexin5 expression was highly elevated in the hippocampi of human AD patients, indicating its potential relevance to AD. We also observed elevated Ephexin5 expression in the hippocampi of hAPP mice. Removal of Ephexin5 expression eliminated hippocampal dendritic spine loss and rescued AD-associated behavioral deficits in the hAPP mice. Furthermore, selective reduction of Ephexin5 expression using shRNA in the dentate gyrus of presymptomatic adolescent hAPP mice was sufficient to protect these mice from developing cognitive impairment. Thus, pathological elevation of Ephexin5 expression critically drives Aβ-induced memory impairment, and strategies aimed at reducing Ephexin5 levels may represent an effective approach to treating AD.

Authors

Gabrielle L. Sell, Thomas B. Schaffer, Seth S. Margolis

×

Kisspeptin modulates sexual and emotional brain processing in humans
Alexander N. Comninos, … , Stephen R. Bloom, Waljit S. Dhillo
Alexander N. Comninos, … , Stephen R. Bloom, Waljit S. Dhillo
Published February 1, 2017; First published January 23, 2017
Citation Information: J Clin Invest. 2017;127(2):709-719. https://doi.org/10.1172/JCI89519.
View: Text | PDF

Kisspeptin modulates sexual and emotional brain processing in humans

  • Text
  • PDF
Abstract

BACKGROUND. Sex, emotion, and reproduction are fundamental and tightly entwined aspects of human behavior. At a population level in humans, both the desire for sexual stimulation and the desire to bond with a partner are important precursors to reproduction. However, the relationships between these processes are incompletely understood. The limbic brain system has key roles in sexual and emotional behaviors, and is a likely candidate system for the integration of behavior with the hormonal reproductive axis. We investigated the effects of kisspeptin, a recently identified key reproductive hormone, on limbic brain activity and behavior.

METHODS. Using a combination of functional neuroimaging and hormonal and psychometric analyses, we compared the effects of kisspeptin versus vehicle administration in 29 healthy heterosexual young men.

RESULTS. We demonstrated that kisspeptin administration enhanced limbic brain activity specifically in response to sexual and couple-bonding stimuli. Furthermore, kisspeptin’s enhancement of limbic brain structures correlated with psychometric measures of reward, drive, mood, and sexual aversion, providing functional significance. In addition, kisspeptin administration attenuated negative mood.

CONCLUSIONS. Collectively, our data provide evidence of an undescribed role for kisspeptin in integrating sexual and emotional brain processing with reproduction in humans. These results have important implications for our understanding of reproductive biology and are highly relevant to the current pharmacological development of kisspeptin as a potential therapeutic agent for patients with common disorders of reproductive function.

FUNDING. National Institute for Health Research (NIHR), Wellcome Trust (Ref 080268), and the Medical Research Council (MRC).

Authors

Alexander N. Comninos, Matthew B. Wall, Lysia Demetriou, Amar J. Shah, Sophie A. Clarke, Shakunthala Narayanaswamy, Alexander Nesbitt, Chioma Izzi-Engbeaya, Julia K. Prague, Ali Abbara, Risheka Ratnasabapathy, Victoria Salem, Gurjinder M. Nijher, Channa N. Jayasena, Mark Tanner, Paul Bassett, Amrish Mehta, Eugenii A. Rabiner, Christoph Hönigsperger, Meire Ribeiro Silva, Ole Kristian Brandtzaeg, Elsa Lundanes, Steven Ray Wilson, Rachel C. Brown, Sarah A. Thomas, Stephen R. Bloom, Waljit S. Dhillo

×

Mechanism for leptin’s acute insulin-independent effect to reverse diabetic ketoacidosis
Rachel J. Perry, … , Gary W. Cline, Gerald I. Shulman
Rachel J. Perry, … , Gary W. Cline, Gerald I. Shulman
Published February 1, 2017; First published January 23, 2017
Citation Information: J Clin Invest. 2017;127(2):657-669. https://doi.org/10.1172/JCI88477.
View: Text | PDF

Mechanism for leptin’s acute insulin-independent effect to reverse diabetic ketoacidosis

  • Text
  • PDF
Abstract

The mechanism by which leptin reverses diabetic ketoacidosis (DKA) is unknown. We examined the acute insulin-independent effects of leptin replacement therapy in a streptozotocin-induced rat model of DKA. Leptin infusion reduced rates of lipolysis, hepatic glucose production (HGP), and hepatic ketogenesis by 50% within 6 hours and were independent of any changes in plasma glucagon concentrations; these effects were abrogated by coinfusion of corticosterone. Treating leptin- and corticosterone-infused rats with an adipose triglyceride lipase inhibitor blocked corticosterone-induced increases in plasma glucose concentrations and rates of HGP and ketogenesis. Similarly, adrenalectomized type 1 diabetic (T1D) rats exhibited decreased rates of lipolysis, HGP, and ketogenesis; these effects were reversed by corticosterone infusion. Leptin-induced decreases in lipolysis, HGP, and ketogenesis in DKA were also nullified by relatively small increases (15 to 70 pM) in plasma insulin concentrations. In contrast, the chronic glucose-lowering effect of leptin in a STZ-induced mouse model of poorly controlled T1D was associated with decreased food intake, reduced plasma glucagon and corticosterone concentrations, and decreased ectopic lipid (triacylglycerol/diacylglycerol) content in liver and muscle. Collectively, these studies demonstrate marked differences in the acute insulin-independent effects by which leptin reverses fasting hyperglycemia and ketoacidosis in a rodent model of DKA versus the chronic pleotropic effects by which leptin reverses hyperglycemia in a non-DKA rodent model of T1D.

Authors

Rachel J. Perry, Liang Peng, Abudukadier Abulizi, Lynn Kennedy, Gary W. Cline, Gerald I. Shulman

×

Blocking type I interferon signaling enhances T cell recovery and reduces HIV-1 reservoirs
Liang Cheng, … , Lishan Su, Liguo Zhang
Liang Cheng, … , Lishan Su, Liguo Zhang
Published January 3, 2017; First published December 12, 2016
Citation Information: J Clin Invest. 2017;127(1):269-279. https://doi.org/10.1172/JCI90745.
View: Text | PDF

Blocking type I interferon signaling enhances T cell recovery and reduces HIV-1 reservoirs

  • Text
  • PDF
Abstract

Despite the efficient suppression of HIV-1 replication that can be achieved with combined antiretroviral therapy (cART), low levels of type I interferon (IFN-I) signaling persist in some individuals. This sustained signaling may impede immune recovery and foster viral persistence. Here we report studies using a monoclonal antibody to block IFN-α/β receptor (IFNAR) signaling in humanized mice (hu-mice) that were persistently infected with HIV-1. We discovered that effective cART restored the number of human immune cells in HIV-1–infected hu-mice but did not rescue their immune hyperactivation and dysfunction. IFNAR blockade fully reversed HIV-1–induced immune hyperactivation and rescued anti–HIV-1 immune responses in T cells from HIV-1–infected hu-mice. Finally, we found that IFNAR blockade in the presence of cART reduced the size of HIV-1 reservoirs in lymphoid tissues and delayed HIV-1 rebound after cART cessation in the HIV-1–infected hu-mice. We conclude that low levels of IFN-I signaling contribute to HIV-1–associated immune dysfunction and foster HIV-1 persistence in cART-treated hosts. Our results suggest that blocking IFNAR may provide a potential strategy to enhance immune recovery and reduce HIV-1 reservoirs in individuals with sustained elevations in IFN-I signaling during suppressive cART.

Authors

Liang Cheng, Jianping Ma, Jingyun Li, Dan Li, Guangming Li, Feng Li, Qing Zhang, Haisheng Yu, Fumihiko Yasui, Chaobaihui Ye, Li-Chung Tsao, Zhiyuan Hu, Lishan Su, Liguo Zhang

×

Targeting CAG repeat RNAs reduces Huntington’s disease phenotype independently of huntingtin levels
Laura Rué, … , Xavier Estivill, Eulàlia Martí
Laura Rué, … , Xavier Estivill, Eulàlia Martí
Published November 1, 2016; First published October 10, 2016
Citation Information: J Clin Invest. 2016;126(11):4319-4330. https://doi.org/10.1172/JCI83185.
View: Text | PDF

Targeting CAG repeat RNAs reduces Huntington’s disease phenotype independently of huntingtin levels

  • Text
  • PDF
Abstract

Huntington’s disease (HD) is a polyglutamine disorder caused by a CAG expansion in the Huntingtin (HTT) gene exon 1. This expansion encodes a mutant protein whose abnormal function is traditionally associated with HD pathogenesis; however, recent evidence has also linked HD pathogenesis to RNA stable hairpins formed by the mutant HTT expansion. Here, we have shown that a locked nucleic acid–modified antisense oligonucleotide complementary to the CAG repeat (LNA-CTG) preferentially binds to mutant HTT without affecting HTT mRNA or protein levels. LNA-CTGs produced rapid and sustained improvement of motor deficits in an R6/2 mouse HD model that was paralleled by persistent binding of LNA-CTG to the expanded HTT exon 1 transgene. Motor improvement was accompanied by a pronounced recovery in the levels of several striatal neuronal markers severely impaired in R6/2 mice. Furthermore, in R6/2 mice, LNA-CTG blocked several pathogenic mechanisms caused by expanded CAG RNA, including small RNA toxicity and decreased Rn45s expression levels. These results suggest that LNA-CTGs promote neuroprotection by blocking the detrimental activity of CAG repeats within HTT mRNA. The present data emphasize the relevance of expanded CAG RNA to HD pathogenesis, indicate that inhibition of HTT expression is not required to reverse motor deficits, and further suggest a therapeutic potential for LNA-CTG in polyglutamine disorders.

Authors

Laura Rué, Mónica Bañez-Coronel, Jordi Creus-Muncunill, Albert Giralt, Rafael Alcalá-Vida, Gartze Mentxaka, Birgit Kagerbauer, M. Teresa Zomeño-Abellán, Zeus Aranda, Veronica Venturi, Esther Pérez-Navarro, Xavier Estivill, Eulàlia Martí

×
  • ← Previous
  • 1
  • 2
  • …
  • 7
  • 8
  • 9
  • 10
  • Next →

No posts were found with this tag.

Advertisement
Follow JCI:
Copyright © 2019 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts