Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews...
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • Reparative Immunology (Jul 2019)
    • Allergy (Apr 2019)
    • Biology of familial cancer predisposition syndromes (Feb 2019)
    • Mitochondrial dysfunction in disease (Aug 2018)
    • Lipid mediators of disease (Jul 2018)
    • Cellular senescence in human disease (Apr 2018)
    • View all review series...
  • Collections
    • Recently published
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Scientific Show Stoppers
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • About
  • Editors
  • Consulting Editors
  • For authors
  • Current issue
  • Past issues
  • By specialty
  • Subscribe
  • Alerts
  • Advertise
  • Contact
  • Conversations with Giants in Medicine
  • Author's Takes
  • Recently published
  • Brief Reports
  • Technical Advances
  • Commentaries
  • Editorials
  • Hindsight
  • Review series
  • Reviews
  • The Attending Physician
  • First Author Perspectives
  • Scientific Show Stoppers
  • Top read articles
  • Concise Communication
Top
  • View PDF
  • Download citation information
  • Send a letter
  • Terms of use
  • Standard abbreviations
  • Article usage
  • Citations to this article
  • Share this article
  • Need Help? E-mail the JCI
  • Top
  • Abstract
  • Supplemental material
  • Version history

Advertisement

ResearchIn-Press PreviewCell biologyNeuroscience Free access | 10.1172/JCI130988

Shortened TDP43 isoforms upregulated by neuronal hyperactivity drive TDP43 pathology in ALS

Kaitlin Weskamp, Elizabeth M. Tank, Roberto Miguez, Jonathon P. McBride, Nicolás B. Gómez, Matthew White, Ziqiang Lin, Carmen Moreno Gonzalez, Andrea Serio, Jemeen Sreedharan, and Sami J. Barmada

Find articles by Weskamp, K. in: JCI | PubMed | Google Scholar

Find articles by Tank, E. in: JCI | PubMed | Google Scholar

Find articles by Miguez, R. in: JCI | PubMed | Google Scholar

Find articles by McBride, J. in: JCI | PubMed | Google Scholar |

Find articles by Gómez, N. in: JCI | PubMed | Google Scholar

Find articles by White, M. in: JCI | PubMed | Google Scholar |

Find articles by Lin, Z. in: JCI | PubMed | Google Scholar

Find articles by Moreno Gonzalez, C. in: JCI | PubMed | Google Scholar

Find articles by Serio, A. in: JCI | PubMed | Google Scholar

Find articles by Sreedharan, J. in: JCI | PubMed | Google Scholar

Find articles by Barmada, S. in: JCI | PubMed | Google Scholar |

First published November 12, 2019 - More info

J Clin Invest. https://doi.org/10.1172/JCI130988.
Copyright © 2019, American Society for Clinical Investigation
First published November 12, 2019 - Version history
Abstract

Neuronal hyperexcitability and cytoplasmic mislocalization of the nuclear RNA binding proteinTDP43 are universal features in amyotrophic lateral sclerosis (ALS), but the relationship between these phenomena remains poorly defined. Here, we show that neuronal hyperexcitability drives TDP43 pathology by upregulating shortened (s)TDP43 splice variants missing the canonical C-terminus. sTDP43 isoforms preferentially accumulate in the cytoplasm,forming insoluble inclusions that sequester full-length TDP43 via preserved N-terminal interactions. Consistent with these findings, sTDP43 overexpression is highly toxic to mammalian neurons, suggesting that neurodegeneration results from complementary gain- and loss-of-function mechanisms. In humans and mice, sTDP43 transcripts are significantly enriched in vulnerable motor neurons, and we observed a striking accumulation of sTDP43 protein within neurons and glia of ALS patients. These studies uncover a hitherto unknown role of alternative TDP43 splice isoforms in ALS, and indicate that sTDP43 production may be a key contributor to the susceptibility of motor neurons in ALS.

Supplemental material

View

Version history
  • Version 1 (November 12, 2019): In-Press Preview

Article tools

  • View PDF
  • Download citation information
  • Send a letter
  • Terms of use
  • Standard abbreviations
  • Article usage
  • Citations to this article
  • Share this article
  • Need Help? E-mail the JCI

Go to:

  • Top
  • Abstract
  • Supplemental material
  • Version history
Advertisement
Advertisement
Follow JCI:
Copyright © 2019 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts