Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews...
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • Reparative Immunology (Jul 2019)
    • Allergy (Apr 2019)
    • Biology of familial cancer predisposition syndromes (Feb 2019)
    • Mitochondrial dysfunction in disease (Aug 2018)
    • Lipid mediators of disease (Jul 2018)
    • Cellular senescence in human disease (Apr 2018)
    • View all review series...
  • Collections
    • Recently published
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Scientific Show Stoppers
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • About
  • Editors
  • Consulting Editors
  • For authors
  • Current issue
  • Past issues
  • By specialty
  • Subscribe
  • Alerts
  • Advertise
  • Contact
  • Conversations with Giants in Medicine
  • Author's Takes
  • Recently published
  • Brief Reports
  • Technical Advances
  • Commentaries
  • Editorials
  • Hindsight
  • Review series
  • Reviews
  • The Attending Physician
  • First Author Perspectives
  • Scientific Show Stoppers
  • Top read articles
  • Concise Communication
Cell-based molecularly targeted therapy: targeting oncoproteins with T cell receptor gene therapy
Christian S. Hinrichs
Christian S. Hinrichs
Published April 2, 2018; First published March 12, 2018
Citation Information: J Clin Invest. 2018;128(4):1261-1263. https://doi.org/10.1172/JCI120386.
View: Text | PDF
Category: Commentary

Cell-based molecularly targeted therapy: targeting oncoproteins with T cell receptor gene therapy

  • Text
  • PDF
Abstract

As oncogenes drive carcinogenesis and promote cancer cell survival, they are highly attractive therapeutic targets, and oncogene-targeting small molecules have achieved some clinical success. While many oncogenes are presently considered to be “druggable,” tumors often acquire treatment resistance, and patients are rarely cured in response to oncogene-specific treatment. In this issue of the JCI, Veatch and colleagues describe a patient with metastatic acral melanoma who experienced a complete tumor response following infusion of tumor-infiltrating T cells that targeted multiple tumor antigens, including a BRAFV600E driver mutation. T cells genetically engineered to express an anti-BRAFV600E T cell receptor (TCR) from the patient demonstrated recognition of an epitope that spanned the BRAFV600E mutation. These findings suggest that BRAFV600E might be targeted therapeutically with adoptive transfer of anti-BRAFV600E T cells. This research supports the emerging therapeutic paradigm of targeting oncogenic drivers with T cell immunotherapy.

Authors

Christian S. Hinrichs

×

Figure 1

TCRs that recognize tumor antigen epitopes that encompass oncoprotein mutations have potential for potent immunotherapy.

Options: View larger image (or click on image) Download as PowerPoint
TCRs that recognize tumor antigen epitopes that encompass oncoprotein mu...
For many types of cancer, small molecule inhibitors to specific oncoproteins have not been identified or have limited efficacy due to off-target effects and acquisition of treatment resistance. In this issue, Veatch and colleagues characterized the T cell response in a patient who had a complete tumor response following infusion of tumor-infiltrating T cells that targeted multiple tumor antigens. TCRs from this patient recognized an epitope that encompassed the driver mutation within an oncoprotein. Targeting of oncoproteins with T cells, which kill tumor cells, rather than small molecules, which inhibit tumor cells, may permit the development of more effective treatments. Additionally, the highly specific oncoprotein targeting by TCRs may reduce the off-target toxicity of treatment.
Follow JCI:
Copyright © 2019 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts