Mechanisms and in vivo functions of contact inhibition of locomotion

B Stramer, R Mayor - Nature reviews Molecular cell biology, 2017 - nature.com
B Stramer, R Mayor
Nature reviews Molecular cell biology, 2017nature.com
Contact inhibition of locomotion (CIL) is a process whereby a cell ceases motility or changes
its trajectory upon collision with another cell. CIL was initially characterized more than half a
century ago and became a widely studied model system to understand how cells migrate
and dynamically interact. Although CIL fell from interest for several decades, the scientific
community has recently rediscovered this process. We are now beginning to understand the
precise steps of this complex behaviour and to elucidate its regulatory components …
Abstract
Contact inhibition of locomotion (CIL) is a process whereby a cell ceases motility or changes its trajectory upon collision with another cell. CIL was initially characterized more than half a century ago and became a widely studied model system to understand how cells migrate and dynamically interact. Although CIL fell from interest for several decades, the scientific community has recently rediscovered this process. We are now beginning to understand the precise steps of this complex behaviour and to elucidate its regulatory components, including receptors, polarity proteins and cytoskeletal elements. Furthermore, this process is no longer just in vitro phenomenology; we now know from several different in vivo models that CIL is essential for embryogenesis and in governing behaviours such as cell dispersion, boundary formation and collective cell migration. In addition, changes in CIL responses have been associated with other physiological processes, such as cancer cell dissemination during metastasis.
nature.com