An in vitro model of hepatitis C virion production

T Heller, S Saito, J Auerbach… - Proceedings of the …, 2005 - National Acad Sciences
T Heller, S Saito, J Auerbach, T Williams, TR Moreen, A Jazwinski, B Cruz, N Jeurkar…
Proceedings of the National Academy of Sciences, 2005National Acad Sciences
The hepatitis C virus (HCV) is a major cause of liver disease worldwide. The understanding
of the viral life cycle has been hampered by the lack of a satisfactory cell culture system. The
development of the HCV replicon system has been a major advance, but the system does
not produce virions. In this study, we constructed an infectious HCV genotype 1b cDNA
between two ribozymes that are designed to generate the exact 5′ and 3′ ends of HCV. A
second construct with a mutation in the active site of the viral RNA-dependent RNA …
The hepatitis C virus (HCV) is a major cause of liver disease worldwide. The understanding of the viral life cycle has been hampered by the lack of a satisfactory cell culture system. The development of the HCV replicon system has been a major advance, but the system does not produce virions. In this study, we constructed an infectious HCV genotype 1b cDNA between two ribozymes that are designed to generate the exact 5′ and 3′ ends of HCV. A second construct with a mutation in the active site of the viral RNA-dependent RNA polymerase (RdRp) was generated as a control. The HCV-ribozyme expression construct was transfected into Huh7 cells. Both HCV structural and nonstructural proteins were detected by immunofluorescence and Western blot. RNase protection assays showed positive- and negative-strand HCV RNA. Sequence analysis of the 5′ and 3′ ends provided further evidence of viral replication. Sucrose density gradient centrifugation of the culture medium revealed colocalization of HCV RNA and structural proteins in a fraction with the density of 1.16 g/ml, the putative density of HCV virions. Electron microscopy showed viral particles of ≈50 nm in diameter. The level of HCV RNA in the culture medium was as high as 10 million copies per milliliter. The HCV-ribozyme construct with the inactivating mutation in the RdRp did not show evidence of viral replication, assembly, and release. This system supports the production and secretion of high-level HCV virions and extends the repertoire of tools available for the study of HCV biology.
National Acad Sciences