Insulin and rosiglitazone regulation of lipolysis and lipogenesis in human adipose tissue in vitro

PG McTernan, AL Harte, LA Anderson, A Green… - Diabetes, 2002 - Am Diabetes Assoc
PG McTernan, AL Harte, LA Anderson, A Green, SA Smith, JC Holder, AH Barnett, MC Eggo…
Diabetes, 2002Am Diabetes Assoc
Lipolysis is an important process determining fuel metabolism, and insulin regulates this
process in adipose tissue. The aim of this study was to investigate the long-term effects of
insulin, an insulin enhancer (rosiglitazone [RSG]), and insulin in combination with RSG on
the regulation of lipolysis and lipogenesis in human abdominal subcutaneous fat. Lipolysis
and lipogenesis were assessed by protein expression studies of hormone-sensitive lipase
(HSL)(84 kDa) and lipoprotein lipase (LPL)(56 kDa), respectively. In addition, lipolytic rate …
Lipolysis is an important process determining fuel metabolism, and insulin regulates this process in adipose tissue. The aim of this study was to investigate the long-term effects of insulin, an insulin enhancer (rosiglitazone [RSG]), and insulin in combination with RSG on the regulation of lipolysis and lipogenesis in human abdominal subcutaneous fat. Lipolysis and lipogenesis were assessed by protein expression studies of hormone-sensitive lipase (HSL) (84 kDa) and lipoprotein lipase (LPL) (56 kDa), respectively. In addition, lipolytic rate was assessed by glycerol release assay and tumor necrosis factor (TNF)-α release measured by enzyme-linked immunosorbent assay (n = 12). In subcutaneous adipocytes, increasing insulin doses stimulated LPL expression, with maximal stimulation at 100 nmol/l insulin (control, 1.0 ± 0.0 [mean ± SE, protein expression relative to control]; 1 nmol/l insulin, 0.87 ± 0.13; 100 nmol/l insulin, 1.68 ± 0.19; P < 0.001). In contrast, insulin at the 100 nmol/l dose reduced the expression of HSL (100 nmol/l insulin, 0.49 ± 0.05; P < 0.05), while no significant reduction was observed at other doses. Higher doses of insulin stimulated both HSL (1,000 nmol/l insulin, 1.4 ± 0.07; P < 0.01) and LPL (control 1.00 ± 0.0; 1,000 nmol/l insulin, 2.66 ± 0.27; P < 0.01) protein expression. Cotreatment with RSG induced an increased dose response to insulin for LPL and HSL (P < 0.05); RSG alone also increased LPL and HSL expression (P < 0.05). Insulin stimulated TNF-α secretion in a dose-dependent manner (P < 0.01); the addition of RSG (10−8 mol/l) reduced TNF-α secretion (P < 0.05). In summary, chronic treatment of human adipocytes with insulin stimulates lipolysis and LPL protein expression. The addition of RSG reduced the lipolytic rate and TNF-α secretion. The increase in lipolysis is not explained by changes in HSL expression. These data, therefore, may explain in part why hyperinsulinemia coexists with increased circulating nonesterified free fatty acids and increased adiposity in obese and/or type 2 diabetic patients.
Am Diabetes Assoc