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Engineering altered IL-2 protein 
to control immunity
The IL-2 cytokine is key in controlling 
immunity, as it can both promote and 
suppress immunity depending on which 
immune cell it signals through. IL-2 can 
bind to the intermediate-affinity dimeric 
receptor, which is composed of CD122 
(IL-2Rβ) and CD132 (IL-2Rγ), or to the 
high-affinity trimeric receptor composed 
of CD25 (IL-2Rα), CD122, and CD132. The 
dimeric IL-2R is mainly found on memory T 
cells and NK cells, whereas the trimeric IL-2 
receptor is found on CD4+FOXP3+ Tregs, on 
recently activated CD4+ and CD8+ effector 
T cells, on some NK cells and NKT cells, and 
on group 2 innate lymphoid cells (ILC2s) (1). 
Treg homeostasis critically relies on IL-2R 
signaling, and Tregs dramatically expand 
upon IL-2R signaling. Thus, given the 
divergent expression of these various IL-2 
receptors (IL-2Rs), IL-2 therapy has been an 
attractive therapeutic concept to promote 
either immunity (by triggering the inter-
mediate-affinity dimeric IL-2R on effector 
immune cells to combat cancer), or immune 

suppression (by triggering the high-affini-
ty trimeric IL-2R on Tregs in the context of 
autoimmunity and transplantation).

However, given the double-edged 
sword aspect of IL-2 therapy, its use in the 
clinic can lead to unexpected outcomes. One 
example includes a clinical trial in which 
stable liver transplant recipients received 
low-dose IL-2 as a means to promote Tregs 
and reduce immunosuppression (2). In pre-
clinical studies, low-dose IL-2 was shown to 
preferentially expand Tregs over effector T 
cells and NK cells (3). All of the patients with 
liver transplants who received low-dose IL-2 
had elevated circulating Tregs. However, 
low-dose IL-2 in this clinical trial was det-
rimental, as the patients developed signs 
of rejection, leading to an early termination 
of the trial (2). Similar observations were 
reported in a clinical trial involving patients 
with type 1 diabetes who concomitantly 
received low-dose IL-2 and Treg therapy 
(4). Low-dose IL-2 treatment not only effec-
tively promoted both adoptively transferred 
and endogenous Tregs, but also expanded 
cytotoxic immune cells.

On the other hand, low-dose IL2 ther-
apy has demonstrated beneficial effects 
in some clinical trials for the treatment of 
various autoimmune disorders, more spe-
cifically in patients with systemic lupus 
erythematosus (5). Thus, it appears that 
the outcomes under low-dose IL-2 thera-
py may vary depending on the underlying 
cytotoxic immune response at the time 
of IL-2 treatment, with the parallel Treg 
expansion having an insufficient inhibito-
ry effect on these cytotoxic immune cells. 
Overall, these trials demonstrate that 
improved therapeutics targeting specific 
IL-2Rs are necessary.

Consequently, efforts have been 
expended to enhance the specificity of 
IL-2R targeting and to increase the bio-
availability of IL-2. To these ends, several 
engineering approaches were undertaken: 
IL-2 muteins, PEGylated IL-2, IL-2–anti–
IL-2 immune complexes and IL-2–Fc, and 
IL-2–CD25 fusion proteins (6).

IL-2 muteins were developed to skew 
the specificity of IL-2 toward either the 
high-affinity trimeric or the intermedi-
ate-affinity dimeric IL-2R. To achieve such 
a goal, these mutated IL-2 proteins dis-
played a reduced affinity either for CD122 
or CD25. The crystal structure of IL-2 
bound to the IL-2R was helpful in identi-
fying the amino acid residues implicated 
in IL-2 interactions with either CD122 or 
CD25. Consequently, targeted amino acid 
substitutions led to two versions of IL-2 
mutein (no-α IL-2 and IL-2 superkine) dis-
playing lower affinity for CD25 and thus 
favored dimeric IL-2R signaling on memory 
T cells and NK cells. In vivo therapy using 
either no-α IL-2 or IL-2 superkine enhanced 
immune responses to tumors, owing to 
increased CD8+ T cell responses and lower 
Treg expansion compared with native IL-2 
therapy. IL-2 muteins with lower affinity 
for CD122, and thus preferential specificity 
for the trimeric IL-2R, were also generated 
[called IgG–(IL-2N88D)2 and Fc.Mut24]. 
Although these muteins displayed a skewed 
affinity for CD25 over CD122, their affin-
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mouse and human Tregs in vitro. In addi-
tion, mIL-2–Fc given to mice or monkeys 
caused a drastic 4-fold increase in Tregs, 
with nominal changes to CD8+ T cells and 
NK cells compared with the control. Nota-
bly, the increase in Treg numbers could be 
sustained with continuous mIL-2–Fc treat-
ment over a three-week period, with Treg 
numbers returning to baseline levels upon 
cessation of mIL-2–Fc treatment.

The expanded Tregs under mIL-2–Fc 
treatment demonstrated all the hallmarks of 
effector Tregs, which are a highly activated 
and actively dividing Treg subset. They also 
showed an enhanced suppressive capaci-
ty in ex vivo suppression assays. Crucially, 
a sustained mIL-2–Fc regimen alone was 
able to provide protection from rejection of 
minor antigen-mismatched skin grafts, with 
approximately 60% to 75% of the grafts 

pendent tolerance, the trimeric high-affinity 
IL-2R represents an appealing therapeutic 
target to achieve this goal.

To this end, Efe and collaborators 
designed an IL-2 mutein fused to the Fc por-
tion of a human IgG1 antibody (termed mIL-
2–Fc) (7). Histidine 16 on native IL-2 is struc-
turally essential for the interaction of IL-2 
with CD122. Hence, histidine 16 was sub-
stituted with a hydrophobic leucine residue. 
This substitution resulted in a lower affinity 
of mIL-2–Fc for the dimeric CD122/CD132 
IL-2R, while preserving near-native affin-
ity for the trimeric CD25/CD122/CD132 
IL-2R. mIL-2–Fc demonstrated a half-life of 
approximately 9 hours in mice, with nominal 
detection at 72 hours. Importantly, mIL-2–Fc 
exhibited specificity for Tregs obtained from 
either mice, monkeys, or humans. mIL-2–Fc 
induced downstream IL-2R signaling in both 

ity for CD25 was reduced compared 
with native IL-2–Fc, which is an import-
ant aspect that was avoided with the IL-2 
mutein presented in this issue of the JCI by 
Efe and colleagues (7). Despite their lower 
affinities for CD25, in vivo treatment with 
either IgG–(IL-2N88D)2 or Fc.Mut24 pro-
moted Tregs and protected from diabetes 
and graft-versus-host disease (6). Howev-
er, these Treg-promoting muteins have not 
been assessed in transplantation settings.

mIL-2–Fc promotes tolerance to 
nominal graft antigen
Approaches that promote endogenous Tregs 
provide attractive advantages over adoptive 
transfer of exogenous Tregs, which are prov-
ing costly and time consuming. Given that 
the field of transplantation is in dire need 
of new therapeutics that promote Treg-de-

Figure 1. mIL-2–Fc with trimeric IL-2R specificity induces tolerance in low effector T cell contexts. The high-affinity trimeric IL-2R is expressed on Tregs 
and on recently activated effector T cells among others. mIL-2–Fc with specificity for the trimeric IL-2R, but not the dimeric IL-2R expressed on memory T 
cells and NK cells, expands Tregs in vivo and induces immunological tolerance to minor antigen-mismatched skin grafts in which low effector T cell levels 
are present at the time of treatment. In contrast, immunological tolerance with mIL-2–Fc treatment cannot be achieved against major antigen-mis-
matched skin grafts in which elevated effector T cell levels are present at the time of treatment, despite expansion of Tregs.
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mote Tregs. Further studies are warranted 
to answer these questions. In addition, it 
remains unknown whether mIL-2–Fc also 
promoted recently activated CD25+ effec-
tor T cells, which would explain the lack of 
a protective effect in major antigen-mis-
matched skin graft recipients when used as 
a monotherapy.

Perspectives and conclusions
Efe and collaborators (7) present crucial 
and encouraging data on the efficacy of a 
Treg-promoting IL-2 mutein with low affin-
ity for CD122 and native affinity for CD25 in 
the context of transplantation. Their report, 
combined with our current knowledge, high-
lights outcomes and considerations for the 
use of available IL-2 muteins that promote 
signaling through the trimeric IL-2R, includ-
ing (a) that a robust antigen-specific tolerance 
can be achieved; (b) the underlying cytotoxic 
immune context in which these IL-2 muteins 
are used dictates outcomes toward either 
immunity in high cytotoxicity contexts, or 
immune suppression in low cytotoxicity con-
texts (Figure 1); and (c) immunosuppressive 
drugs controlling the underlying cytotoxic 
immune response synergize with IL-2 mutein 
to improve graft survival outcomes. Thus, 
future clinical trials assessing the therapeu-
tic efficacy of IL-2 muteins in transplanta-
tion will need to be carefully designed to 
avoid their use during elevated cytotoxic 
immune circumstances. In addition, fur-
ther engineering efforts that enhance the 
specificity of IL-2 muteins for Tregs would 
greatly improve therapeutic efficacy.
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surviving several weeks after cessation of 
mIL-2–Fc treatment. Interestingly, the mice 
bearing long-term surviving skin grafts 
demonstrated donor-specific tolerance, sug-
gesting that mIL-2–Fc promoted immune 
regulation to donor antigens (Figure 1). 
Consistently, early histological analysis of 
primary skin grafts from mIL-2–Fc–treated 
mice showed elevated Treg to effector T cell 
ratios compared with controls.

In contrast to these results, the same 
sustained mIL-2–Fc regimen alone failed 
to protect major antigen-mismatched 
skin grafts from rejection, with all grafts 
rejected at the same tempo as that seen 
in control untreated mice. This outcome 
occurred despite elevated numbers of cir-
culating Tregs. However, mIL-2–Fc treat-
ment synergized with a commonly used 
immunosuppressive drug, tacrolimus, and 
delayed the rejection of skin allografts 
compared with individual treatments. 
One can assume that additional immuno-
suppression is necessary in this context 
to control the strong and rapid effector T 
response to major or multiple alloantigens, 
which does not occur under minor anti-
gen-mismatched skin grafts.

Interestingly, this lack of protection 
of major antigen-mismatched skin grafts 
with mIL-2–Fc treatment alone was also 
observed in a previous study using IL-2/
anti–IL-2 complexes that target all IL-2Rs 
(8). In addition, treatment with the IL-2/
anti–IL-2 complexes synergized with immu-
nosuppression, as similarly observed with 
mIL-2–Fc treatment. These strikingly sim-
ilar results raise the question as to whether 
mIL-2–Fc provides a therapeutic advantage 
in the context of a strong effector T cell 
response over the treatment with native 
IL-2, or with other IL-2 muteins that pro-


